Publicaciones

Últimas 5 publicaciones.

Dr. Aldo Azmar Rodríguez Menchaca:

1.-Dual regulation of hEAG1 channels by phosphatidylinositol 4,5-bisphosphate.

Delgado-Ramírez M, López-Izquierdo A, Rodríguez-Menchaca AA. Biochem Biophys Res Commun. 2018. https://doi.org/10.1016/j.bbrc.2018.07.011

2.-Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content. 

Delgado-Ramírez M, Sánchez-Armass S, Meza U, Rodríguez-Menchaca AA. Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content. Biochim Biophys Acta. 2018 May;1860(5):1242-1251.

3.-Regulation of Kv2.1 channel inactivation by phosphatidylinositol 4,5-bisphosphate.

Delgado-Ramírez M, De Jesús-Pérez JJ, Aréchiga-Figueroa IA, Arreola J, Adney SK, Villalba-Galea CA, Logothetis DE, Rodríguez-Menchaca AA. Regulation of Kv2.1 channel inactivation by phosphatidylinositol 4,5-bisphosphate. Sci Rep. 2018 Jan 29;8(1):1769.

4.-Phytochemicals genistein and capsaicin modulate Kv2.1 channel gating.

Aréchiga-Figueroa IA, Morán-Zendejas R, Delgado-Ramírez M, Rodríguez-Menchaca AAPharmacol Rep. 2017 Dec;69(6):1145-1153.

5.-High-potency block of Kir4.1 channels by pentamidine: Molecular basis

Aréchiga-Figueroa IA, Marmolejo Murillo LG, Cui M, Delgado-Ramírez M, vander Hayden MAG, Sánchez-Chapula JA, Rodríguez-Menchaca AAEur J Pharm. 2017 Nov 15; 815:5663


Dr. Iván Arael Arechiga Figueroa:

1.-Regulation of Kv2.1 channel inactivation by phosphatidylinositol 4,5-bisphosphate.

Delgado-Ramírez M, De Jesús-Pérez JJ, Aréchiga-Figueroa IA, Arreola J, Adney SK, Villalba-Galea CA, Logothetis DE, Rodríguez-Menchaca AA. Regulation of Kv2.1 channel inactivation by phosphatidylinositol 4,5-bisphosphate. Sci Rep. 2018 Jan 29;8(1):1769.

2.-Phytochemicals genistein and capsaicin modulate Kv2.1 channel gating.

Aréchiga-Figueroa IA, Morán-Zendejas R, Delgado-Ramírez M, Rodríguez-Menchaca AA. Pharmacol Rep. 2017 Dec;69(6):1145-1153.

3.-High-potency block of Kir4.1 channels by pentamidine: Molecular basis

Aréchiga-Figueroa IA, Marmolejo Murillo LG, Cui M, Delgado-Ramírez M, vander Hayden MAG, Sánchez-Chapula JA, Rodríguez-Menchaca AA. Eur J Pharm. 2017 Nov 15; 815:5663

Marmolejo-Murillo LG, Aréchiga-Figueroa IA, Cui M, Moreno-Galindo EG, Navarro-Polanco RA, Sánchez-Chapula JA, Ferrer T, Rodríguez-Menchaca AA. Inhibition of Kir4.1 potassium channels by quinacrine. Brain Res. 2017 May 15;1663:87-94.

Marmolejo-Murillo LG, Aréchiga-Figueroa IA, Moreno-Galindo EG, Navarro-Polanco RA, Rodríguez-Menchaca AA, Cui M, Sánchez-Chapula JA, Ferrer T. Chloroquine blocks the Kir4.1 channels by an open-pore blocking mechanism. Eur J Pharmacol. 2017 Apr 5;800:40-47.


Dr. Manuel Rodríguez Martínez:

1.-Highly suggestive preliminary evidence that the renal interstitium contracts in vivo. 

Flores-Sandoval O, Sánchez-Briones ME, López-Rodríguez JF, Calvo-Turrubiartes MZ, Llamazares-Azuara L, Rodríguez-Martínez M. Highly suggestive preliminary evidence that the renal interstitium contracts in vivo. Physiol Rep. 2017 Jun;5(12).

2.-Partial baroreceptor dysfunction and low plasma nitric oxide bioavailability as determinants of salt-sensitive hypertension: a reverse translational rat study.

Rodríguez-Pérez AS, López-Rodríguez JF, Calvo-Turrubiartes MZ, Saavedra-Alanís VM, Llamazares-Azuara L, Rodríguez-Martínez MBraz J Med Biol Res. 2013 Oct 12;46(10):868-880. [Epub ahead of print]

3.Closed-loop control of renal perfusion pressure in physiological experiments.

Campos-Delgado DU, Bonilla I, Rodríguez-Martínez M, Sánchez-Briones ME, Ruiz-Hernández E. IEEE Trans Biomed Eng. 2013 Jul;60(7):1776-84. doi: 10.1109/TBME.2013.2241435. Epub 2013 Jan 21.

4.-An improved strategy for evaluating the extent of chronic arterial baroreceptor denervation in conscious rats.

Rodríguez-Martínez M, Torres-Rodríguez ML, Brito-Orta MD, López-Rodriguez JF, Rodríguez-Pérez AS, Calvo-Turrubiartes MZ, Llamazares-Azuara L. Braz J Med Biol Res. 2010 Nov;43(11):1062-75. Epub 2010 Oct 1.

5.-Gingivitis and periodontitis as antagonistic modulators of gingival perfusion.

Rodríguez-Martínez M, Patiño-Marín N, Loyola-Rodríguez JP, Brito-Orta MD. J Periodontol. 2006 Oct;77(10):1643-50.


Dr. Osvaldo Ibañez Sandoval:

1.-Activation of glutamatergic fibers in the anterior NAc shell modulates reward activity in the aNAcSh, the lateral hypothalamus and medial prefrontal cortex and transiently stops feeding. 

Prado L, Luis-Islas L, Sandoval OI, Puron L, Gill M, Luna A, Arias-Garcia M, Galarraga E, Simon S. A. and Gutierrez R.  J Neurosci. 2016 Dec 14;36(50):12511-12529.

2.-Dopaminergic and cholinergic modulation of striatal tyrosine hydroxylase interneurons.

Ibáñez-Sandoval O, Xenias HS, Tepper JM, Koós T. Neuropharmacology. 2015 Aug;95:468-76. doi: 10.1016/j.neuropharm.2015.03.036. Epub 2015 Apr 20.

3.-Are striatal tyrosine hydroxylase interneurons dopaminergic?

Xenias HS, Ibáñez-Sandoval O, Koós T, Tepper JM. J Neurosci. 2015 Apr 22;35(16):6584-99. doi: 10.1523/JNEUROSCI.0195-15.2015.

4.-Neonatal olfactory bulbectomy enhances locomotor activity, exploratory behavior and binding of NMDA receptors in pre-pubertal rats.

Flores G, Ibañez-Sandoval O, Silva-Gómez AB, Camacho-Abrego I, Rodríguez-Moreno A, Morales-Medina JC. Neuroscience. 2014 Feb 14;259:84-93. doi: 10.1016/j.neuroscience.2013.11.047. Epub 2013 Dec 1.

Huang Y, Smith DE, Ibáñez-Sandoval O, Sims JE, Friedman WJ. J Neurosci. 2011 Dec 7;31(49):18048-59. doi: 10.1523/JNEUROSCI.4067-11.2011.


Dr. Ricardo Espinosa Tanguma:

1.-Evaluation of cardiovascular responses to silver nanoparticles (AgNPs) in spontaneously hypertensive rats.

Ramirez-Lee MA, Aguirre-Bañuelos P, Martinez-Cuevas PP, Espinosa-Tanguma R, Chi-Ahumada E, Martinez-Castañon GA, Gonzalez C. Evaluation of cardiovascular responses to silver nanoparticles (AgNPs) in spontaneously hypertensive rats. Nanomedicine. 2018 Feb;14(2):385-395.

2.Effect of silver nanoparticles upon the myocardial and coronary vascular function in isolated and perfused diabetic rat hearts.

Ramirez-Lee MA, Espinosa-Tanguma R, Mejía-Elizondo R, Medina-Hernández A, Martinez-Castañon GA, Gonzalez C. Effect of silver nanoparticles upon the myocardial and coronary vascular function in isolated and perfused diabetic rat hearts. Nanomedicine. 2017 Nov;13(8):2587-2596.

3.The prolactin family hormones regulate vascular tone through NO and prostacyclin production in isolated rat aortic rings.

Gonzalez C, Rosas-Hernandez H, Jurado-Manzano B, Ramirez-Lee MA, Salazar-Garcia S, Martinez-Cuevas PP, Velarde-Salcedo AJ, Morales-Loredo H, Espinosa-Tanguma R, Ali SF, Rubio R. Acta Pharmacol Sin. 2015 May;36(5):572-86. doi: 10.1038/aps.2014.159. Epub 2015 Apr 20.

4.-Silver nanoparticles induce anti-proliferative effects on airway smooth muscle cells. Role of nitric oxide and muscarinic receptor signaling pathway.

Ramírez-Lee MA, Rosas-Hernández H, Salazar-García S, Gutiérrez-Hernández JM, Espinosa-Tanguma R, González FJ, Ali SF, González C. Toxicol Lett. 2014 Jan 13;224(2):246-56. doi: 10.1016/j.toxlet.2013.10.027. Epub 2013 Nov 1.

5.-Effect of 45 nm silver nanoparticles (AgNPs) upon the smooth muscle of rat trachea: role of nitric oxide.

González C, Salazar-García S, Palestino G, Martínez-Cuevas PP, Ramírez-Lee MA, Jurado-Manzano BB, Rosas-Hernández H, Gaytán-Pacheco N, Martel G, Espinosa-Tanguma R, Biris AS, Ali SF. Toxicol Lett. 2011 Dec 15;207(3):306-13. doi: 10.1016/j.toxlet.2011.09.024. Epub 2011 Oct 1.


Dr. Sergio Sánchez-Armáss Acuña:

1.-Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content. 

Delgado-Ramírez M, Sánchez-Armass S, Meza U, Rodríguez-Menchaca AA. Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content. Biochim Biophys Acta. 2018 May;1860(5):1242-1251.

2.-Inhibition of CaV2.3 channels by NK1 receptors is sensitive to membrane cholesterol but insensitive to caveolin-1.

Licon Y, Leandro D, Romero-Mendez C, Rodriguez-Menchaca AA, Sanchez-Armass S, Meza U. Pflugers Arch. 2015 Aug;467(8):1699-709. doi: 10.1007/s00424-014-1605-0. Epub 2014 Sep 11.

3.-Oxidative stress induced by P2X7 receptor stimulation in murine macrophages is mediated by c-Src/Pyk2 and ERK1/2.

Martel-Gallegos G, Casas-Pruneda G, Ortega-Ortega F, Sánchez-Armass S, Olivares-Reyes JA, Diebold B, Pérez-Cornejo P, Arreola J. Biochim Biophys Acta. 2013 Oct;1830(10):4650-9. doi: 10.1016/j.bbagen.2013.05.023. Epub 2013 May 24.

Rangel A, Sánchez-Armass S, Meza U. Mol Pharmacol. 2010 Feb;77(2):202-10. doi: 10.1124/mol.109.058727. Epub 2009 Oct 5. Erratum in: Mol Pharmacol. 2010 Mar;77(3):495.

Romero-Méndez C, Algara-Suárez P, Sánchez-Armass S, Mandeville PB, Meza U, Espinosa-Tanguma R. Clin Exp Pharmacol Physiol. 2009 Jul;36(7):619-25. doi: 10.1111/j.1440-1681.2008.05115.x.


Dr. Ulises Meza Villanueva:

1.-Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content. 

Delgado-Ramírez M, Sánchez-Armass S, Meza U, Rodríguez-Menchaca AA. Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content. Biochim Biophys Acta. 2018 May;1860(5):1242-1251.

2.-Molecular mechanisms and physiological relevance of RGK proteins in the heart.

Meza U, Beqollari D, Bannister RA. Molecular mechanisms and physiological relevance of RGK proteins in the heart. Acta Physiol (Oxf). 2018 Apr;222(4):e13016.

3.-Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers.

Beqollari D, Romberg CF, Filipova D, Meza U, Papadopoulos S, Bannister RA. Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers. J Gen Physiol. 2015 Jul;146(1):97-108.

4.-Inhibition of CaV2.3 channels by NK1 receptors is sensitive to membrane cholesterol but insensitive to caveolin-1.

Licon Y, Leandro D, Romero-Mendez C, Rodriguez-Menchaca AA, Sanchez-Armass S, Meza UPflugers Arch. 2015 Aug;467(8):1699-709. doi: 10.1007/s00424-014-1605-0. Epub 2014 Sep 11.

5.-Differential effects of RGK proteins on L-type channel function in adult mouse skeletal muscle.

Beqollari D, Romberg CF, Meza U, Papadopoulos S, Bannister RA. Biophys J. 2014 May 6;106(9):1950-7. doi: 10.1016/j.bpj.2014.03.033.


 Dra. Alma Rosa Barajas Espinosa:

1.-Recreating Intestinal Peristalsis in the Petri Dish.

Espinosa-Luna R, Barajas-Espinosa AR, Ochoa-Cortez F, Barajas-López C. Recreating Intestinal Peristalsis in the Petri Dish. Methods Mol Biol. 2018;1727:423-432.

2.-Modulation of p38 kinase by DUSP4 is important in regulating cardiovascular function under oxidative stress.

Barajas-Espinosa A, Basye A, Angelos MG, Chen CA. Free Radic Biol Med. 2015 Dec;89:170-81. doi: 10.1016/j.freeradbiomed.2015.07.013. Epub 2015 Jul 14.

Barajas-Espinosa A, Basye A, Jesse E, Yan H, Quan D, Chen CA. Free Radic Biol Med. 2014 Sep;74:188-99. doi: 10.1016/j.freeradbiomed.2014.06.016. Epub 2014 Jun 26.

Maiseyeu A, Yang HY, Ramanathan G, Yin F, Bard RL, Morishita M, Dvonch JT, Wang L, Spino C, Mukherjee B, Badgeley MA, Barajas-Espinosa A, Sun Q, Harkema J, Rajagopalan S, Araujo JA, Brook RD. Inhal Toxicol. 2014 Jan;26(1):23-9. doi: 10.3109/08958378.2013.850761.

Arroyo-Flores B, Chi-Ahumada E, Briones-Cerecero E, Barajas-Espinosa A, Perez-Aguilar S, de la Rosa AB, Knabb M, Rubio R. Open Cardiovasc Med J. 2011;5:239-45. doi: 10.2174/1874192401105010239. Epub 2011 Dec 30.


Dra. Gloria Patricia Pérez Cornejo:

1.-Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1).

De Jesús-Pérez JJ, Cruz-Rangel S, Espino-Saldaña ÁE, Martínez-Torres A, Qu Z, Hartzell HC, Corral-Fernandez NE, Pérez-Cornejo P, Arreola J. Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1). Biochim Biophys Acta. 2018 Mar;1863(3):299-312.

2.-Extracellular protons enable activation of the Calcium-Dependent chloride Channel TMEM16A (ANO1).

Cruz-Rangel S, De Jesus-Pérez JJ, Aréchiga-Figueroa IA, Rodríguez-Menchaca AA, Pérez-Cornejo P, Hartzell HC, Arreola J.        J Physiol. 2017 Mar 1;595(5):1515-1531.

3.-P2X7 from j774 murine macrophages acts as a scavenger receptor for bacteria but not yeast.

Pérez-Flores G, Hernández-Silva C, Gutiérrez-Escobedo G, De Las Peñas A, Castaño I, Arreola J, Pérez-Cornejo P. Biochem Biophys Res Commun. 2016 Dec 2;481(1-2):19-24.

4.-Revealing the activation pathway for TMEM16A chloride channels from macroscopic currents and kinetic models.

Contreras-Vite JA, Cruz-Rangel S, De Jesús-Pérez JJ, Aréchiga-Figueroa IA, Rodríguez-Menchaca AA, Pérez-Cornejo P, Hartzell HC, Arreola J. Pflugers Arch. 2016 Jul;468(7):1241-57.

5.-Gating modes of calcium-activated chloride channels TMEM16A and TMEM16B.

Cruz-Rangel S, De Jesús-Pérez JJ, Contreras-Vite JA, Pérez-Cornejo P, Hartzell HC, Arreola J. J Physiol. 2015 Dec 15;593(24):5283-98. doi: 10.1113/JP271256. Epub 2015 Dec 7.

One thought on “Publicaciones

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *